Lens Transplantation in Zebrafish and its Application in the Analysis of Eye Mutants
نویسندگان
چکیده
The lens plays an important role in the development of the optic cup. Using the zebrafish as a model organism, questions regarding lens development can be addressed. The zebrafish is useful for genetic studies due to several advantageous characteristics, including small size, high fecundity, short lifecycle, and ease of care. Lens development occurs rapidly in zebrafish. By 72 hpf, the zebrafish lens is functionally mature. Abundant genetic and molecular resources are available to support research in zebrafish. In addition, the similarity of the zebrafish eye to those of other vertebrates provides basis for its use as an excellent animal model of human defects. Several zebrafish mutants exhibit lens abnormalities, including high levels of cell death, which in some cases leads to a complete degeneration of lens tissues. To determine whether lens abnormalities are due to intrinsic causes or to defective interactions with the surrounding tissues, transplantation of a mutant lens into a wild-type eye is performed. Using fire-polished metal needles, mutant or wild-type lenses are carefully dissected from the donor animal, and transferred into the host. To distinguish wild-type and mutant tissues, a transgenic line is used as the donor. This line expresses membrane-bound GFP in all tissues, including the lens. This transplantation technique is an essential tool in the studies of zebrafish lens mutants.
منابع مشابه
Zebrafish mutagenesis yields eye morphological mutants with retinal and lens defects
A chemical mutagenesis to identify zebrafish eye morphological mutants was performed by screening F(3) larvae at 5 and 7 days post-fertilization (dpf) for changes in eye or pupil size. Based on histological analysis, four different phenotypic classes were obtained. The two Class I and three Class II mutants are all characterized by small eyes and exhibit defects in early retinal development or ...
متن کاملMelanosomes in pigmented epithelia maintain eye lens transparency during zebrafish embryonic development
Altered levels of trace elements are associated with increased oxidative stress that is eventually responsible for pathologic conditions. Oxidative stress has been proposed to be involved in eye diseases, including cataract formation. We visualized the distribution of metals and other trace elements in the eye of zebrafish embryos by micro X-ray fluorescence (μ-XRF) imaging. Many elements showe...
متن کاملLens Extrusion from Laminin Alpha 1 Mutant Zebrafish
We report analysis of the ocular lens phenotype of the recessive, larval lethal zebrafish mutant, lama1 (a69/a69). Previous work revealed that this mutant has a shortened body axis and eye defects including a defective hyaloid vasculature, focal corneal dysplasia, and loss of the crystalline lens. While these studies highlight the importance of laminin α1 in lens development, a detailed analysi...
متن کاملNumerical Analysis of the Thermal Interaction of Cell Phone Radiation with Human Eye Tissues
Introduction: The present study aimed to present a numerical analysis of the penetration depth, specific absorption rate (SAR), and temperature rise in various eye tissues with varying distance between radiation source and exposed human eye tissues (i.e., cornea, posterior chamber, anterior chamber, lens, sclera, vitreous humor, and iris) at frequencies of 900 and1800 MHz. Materials and Method...
متن کاملEvaluation of Occupational Radiation Status and Validity of Individual Dose and Eye Lens Assessment Using Single Film Dosimeter for Angiographic Staff in Iran
Background and Aim: In angiography, the lens of the eye may be exposed to radiation and cause cataracts. In Iran, at present, only a single film dosimeter is used under the lead-apron to evaluate individual doses. The aim of this study was to investigate the status of occupational radiation as well as the validity of measuring the dose of the whole body of individuals and eye lenses using a sin...
متن کامل